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LETTER TO THE EDITOR

Examples of quaternionic and Kähler structures in
Hamiltonian models of nearly geostrophic flow

V N Rubtsov†§ and I Roulstone‡‖
† Institute for Theoretical and Experimental Physics, 25, Bol Tcheremushkinskaya, 117259
Moscow, Russia
‡ Meteorological Office, London Road, Bracknell RG12 2SZ, UK

Received 20 November 1996

Abstract. We study 2-forms on phase spaces of Hamiltonian models of nearly geostrophic
flows. A quaternionic structure is identified, and the complex part of a symplectic representation
of this structure corresponds to an elliptic Monge–Ampère equation. The real part is an invariant
Kähler structure.

1. Introduction

Atmospheric cyclones and anticyclones, and ocean eddies, can be idealized as the
stratified, rotating coherent structures that correspond to circular vortices in ordinary two-
dimensional Euler flow. Their interaction and evolution, which play a major role in
weather developments and in the behaviour of ocean eddies, have been much studied
using approximations to Newton’s second law of motion. These approximate models seek
to describe flows in which there is a dominant balance between the Coriolis, buoyancy
and pressure-gradient forces. Such approximations to Newton’s second law are commonly
referred to asbalanced models. The balance between the Coriolis and pressure gradient
forces is referred to asgeostrophicbalance. Such balance conditions can be used to define
slow manifoldswithin the full phase space of the unapproximated dynamics (Salmon 1988,
Allen and Holm 1996, McIntyre and Roulstone 1996).

Many of these balanced models have one particular feature in common, that is, they
have one degree of freedom. In practice, this is realized by the reduction of Newton’s laws
of motion to a single partial differential equation for a scalar variable. For example, the
motion of air on a surface of constant potential temperature in the atmosphere might, under
certain physical conditions, be approximated by the equation$t + u · ∇$ = 0, where the
vorticity $ = −1ψ and the velocityu = (−ψy,ψx).

In this paper we demonstrate, by means of explicit examples, how the reduction of
the degrees of freedom can be viewed as a contactification of the symplectic structure of
the exact, unapproximated dynamics, followed by the restriction to the graph of a single
scalar variable. In section 2 we show how this works for the semi-geostrophic equations,
a balanced model whose mathematical structure has been studied thoroughly (Cullen and
Purser 1984, Salmon 1985, 1988, Purser and Cullen 1987, Roulstone and Norbury 1994,
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Roulstone and Sewell 1996a, b). We show how the Monge–Ampère operator of that model
can be obtained from the underlying geometry. In section 3 we construct a quaternionic
description of balanced models. The quaternionic structure possesses three pairs of self-
dual and anti-self-dual 2-forms, one pair of which encodes a Monge–Ampère equation. The
quaternionic structure provides a means of describing, in a unified way, how a Monge–
Ampère operator is common to (i) the model referred to asL1 dynamics by Salmon (1985,
1988) and McIntyre and Roulstone (1996), (ii) the semi-geostrophic model and (iii) a new
model discussed by McIntyre and Roulstone (1996, section 9). A symplectic representation
of the quaternion possesses a natural Kähler structure.

2. A geometric approach to semi-geostrophic theory

2.1. Contactification of a symplectic structure

Consider fluid flow on a regionD ∈ R2. The cotangent bundleV∗ = T ∗R2 has coordinates
{x, y, p, q} which span the phase space of a fluid obeying Newton’s second law (e.g. the
shallow water equations (Salmon 1983)).

Let (V, �) be a symplectic space with� ∈∧2
(V∗) and in coordinates we write

� = dx ∧ dp + dy ∧ dq.

The transformation

f : {x, y, p, q} 7→ {x + p, y + q, p, q} ≡ {X, Y, P,Q} (1)

has the propertyf ∗(�) = � and is therefore canonical. The functionS = 1
2(p

2 + q2) is a
generating function forf in the usual sense:

P − p = ∂S

∂x
= 0 X − x = ∂S

∂p
= p

Q− q = ∂S

∂y
= 0 Y − y = ∂S

∂q
= q.

Consider the contactification ofV∗ (Arnol’d 1989, appendix 4L)

{x, y, p, q} 7→ {x, y, φ, p, q} ≡ C
whereφ would be identified with a suitably scaled geopotential function in most applications.
Then there exists a natural liftfC , of f , to the contact bundle

fC : {x, y, φ, p, q} 7→ {x + p, y + q, φ + 1
2(p

2+ q2), p, q} ≡ {X, Y,8, P,Q}. (2)

The mapfC preserves the Cartan form

θ = dφ − p dx − q dy (3)

i.e. f ∗C (θ) = θ , and is therefore a contact transformation.
The graph ofφ is a Legendrian submanifold inJ 1D, the manifold of 1-jets of smooth

functions onD with coordinates

{x, y, φ, p = φx, q = φy}. (4)

Let us recall briefly the correspondence between the Monge–Ampère operators (equations)
and the contact geometry ofJ 1D (e.g. Lychagin 1979). A Monge–Ampère equation is a
relation of the form

A+ Bφxx + 2Cφxy +Dφyy + E(φxxφyy − φ2
xy) = 0. (5)



Letter to the Editor L65

The coefficientsA,B,C,D,E depend onx, y, φ, p, q where x and y are independent
variables andφ = φ(x, y) is an unknown function. We suppose also that

A2+ B2+ C2+D2+ E2 6= 0. (6)

It is known (Lychagin 1979) that the left-hand side of (5) is given by the differential 2-form

ω = A dx ∧ dy + B dp ∧ dy + C(dx ∧ dp + dq ∧ dy)+D dx ∧ dq + E dp ∧ dq. (7)

That is, evaluatingω on the graph ofφ yields a Monge–Amp̀ere equation on the second jet
bundleJ 2D with coordinates{x, y, φ, p, q, r, s, t}, where

p = φx q = φy r = φxx s = φyy t = φxy. (8)

The left-hand sides of equations of type (5) are in one-to-one correspondence with the
differential 2-forms of type (7).

Consider the exterior differential of the Cartan formθ

� = dθ = dx ∧ dp + dy ∧ dq. (9)

The differential 2-form (7) iseffective, which means that

i
∂ω

∂φ
= 0 andω ∧� = 0. (10)

2.2. Semi-geostrophic theory

The motion of a typical particle inD can be described by expressing the current horizontal
coordinates

x = x(a, b, t) y = y(a, b, t) (11)

as functions, on the right, of the particle labelsa, b and the timet . If t = 0 is the reference
time, the functions in (11) have the propertiesx(a, b,0) = a, y(a, b,0) = b. Care must
be taken when interpreting a partial derivative, e.g.∂/∂x, as this means varyingx on a
particle, holdingy, p andq constant.

The transformation (2), when restricted to the graph ofφ, is thegeostrophic momentum
transformation (Sewell and Roulstone 1994, Theorem 11), and the semi-geostrophic
equations can be written in the Hamiltonian form

dX

dt
= −∂8

∂Y

dY

dt
= ∂8

∂X
(12)

where
d

dt
= ∂

∂t
+ ẋ ∂

∂x
+ ẏ ∂

∂y
= ∂

∂t
+ Ẋ ∂

∂X
+ Ẏ ∂

∂Y
(13)

and the canonical coordinatesX, Y are given in this notation by

X = x + p Y = y + q X, Y ∈ J 1D. (14)

The functionφ represents some suitably scaled geopotential (or the depth in shallow water
theory). In meteorological terminology, the vector field(−q, p) ≡ (uG, vG) is known as
the geostrophic wind. The mapping{x, y} 7→ {X, Y } is a Legendre transformation

X = ψx Y = ψy (15)

whereψ = 1
2(x

2+ y2)+ φ and

x = 9X y = 9Y (16)

where9 = 1
2(X

2+ Y 2)−8 =X · x− ψ .
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The singularities of this map can be interpreted as atmospheric fronts (Chynowethet al
1988, Chynoweth and Sewell 1989, 1991).

Using (12), and a continuity equation of the form (Roulstone and Sewell 1996a)

d

dt

(
∂(x, y)

∂(a, b)

)
= 0 (17)

one can show (using (8))

d

dt

(
1+ r + s + rs − t2) = 0. (18)

This is an expression for the conservation of potential vorticity.
The Monge–Amp̀ere operator in (18) can be obtained from�, in (9), via a transformation

from V∗ to J 2D. Explicitly,

FJ 2D ≡ {x, y, p, q} 7→ {−q + 1
2(pt − qr − y), p − 1

2(qt − ps − x), x, y} (19)

for then

F ∗
J 2D(�) = [1+ r + s + rs − t2] dx ∧ dy. (20)

The transformation{p, q} 7→ {−q+ 1
2(pt−qr), p− 1

2(qt−ps)} is exactly the transformation
of Roulstone and Sewell (1996a, equation (49)). The 2-form dX ∧ dY , expressed onJ 2D,
is simply

dX ∧ dY = [1+ r + s + rs − t2] dx ∧ dy = F ∗
J 2D(�). (21)

In the next section we show how this 2-form arises from a symplectic representation of a
quaternionic structure.

3. A quaternionic structure for balanced models

Consider the quaternion

` = x + icq + jcp + ky (22)

wherec ∈ R is a constant, to be specified later, and

i2 = j2 = k2 = −1

ij = −ji = k
jk = −kj = i
ki = −ik = j

(23)

is the standard quaternion algebra. Using the representation (22), the 2-form d` ∧ d ¯̀ can
be written as a triplet of self-dual 2-forms.

Using (23), we writè in a symplectic representation

` = x + icq + k(y + icp) (24)

and define

z ≡ x + icq w ≡ y − icp. (25)

Then, using (24), we construct the 2-form

d` ∧ d ¯̀ = dz ∧ dz̄− dw ∧ dw̄ − k(dz ∧ dw + dz̄ ∧ dw̄) (26)



Letter to the Editor L67

whose real part

�C ≡ dz ∧ dz̄− dw ∧ dw̄ (27)

is a Kähler structure with respect to the symplectic representation (24). The complex part
of d` ∧ d ¯̀ corresponds to a Monge–Ampère equation onJ 2D

dz ∧ dw + dz̄ ∧ dw̄ = 2[1+ c2(rs − t2)] dx ∧ dy. (28)

Consider theC2 spanned by{z,w}. Then the transformation (cf (1))

g : {z,w} 7→ {z + ap,w + aq} ≡ {Z,W } a ∈ R a constant (29)

preserves�C, i.e. g∗(�C) = �C. Furthermore,

g∗(d` ∧ d ¯̀) = �C − 2k[1+ a(r + s)+ (a2− c2)(rs − t2)] dx ∧ dy (30)

of which the complex part is a Monge–Ampère operator.
To understand the appearance of the representation (24) we note some facts about the

connections between elliptic Monge–Ampère equations and families of complex structures
on their solutions (Lychagin and Rubtsov 1983, Lychaginet al 1993). Let us consider an
elliptic Monge–Amp̀ere equation with constant coefficients (28). The corresponding 2-form
(7) defines a family of operatorsAµ : TµV∗ 7→ TµV∗, µ ∈ V∗ by the rule

�(AµX, Y ) = ω(X, Y ) X, Y ∈ TµV∗. (31)

The operatorsAµ satisfy the characteristic equation which in our case readsA2
µ + 1 = 0

and the fieldµ 7→ Aµ defines an almost complex structure onV∗. Direct verification
(see Lychaginet al 1993) shows that the closedness of (7) implies vanishing of the
Nijenhuis tensor ofAµ and hence, by the Newlander–Nirenberg theorem, the integrability
of the complex structure. This is exactly thenew complex structure compatible with the
representation (24).

Conversely, given any almost complex structureA onV∗ there is a unique 2-formω on
V∗ such that�+ iAω is (2,0)-form onV∗ with respect toA and it provides the ellipticity
of the Monge–Amp̀ere operator, corresponding toω. The Legendrian submanifolds of (28)
areA-(pseudo) holomorphiccurves.

We note that the quaternionic representation gives a simple explanation and a proof of
the isomorphism between the Grassmanian of Cartan’s planes for an elliptic Monge–Ampère
equation andCP1 (Lychagin 1982). The point of the Cartan Grassmanian is a tangent plane
to a solution of the Monge–Ampère equation and, hence, carries anA-complex structure,
but the quaternionic representation permits us to consider this structure as a point of aS2

(CP1) parametrizing all complex structures on the underlying quaternionic space.
Using (30), we can now see how the quaternionic structure arises inL1 dynamics, and

in other models discussed by McIntyre and Roulstone (1996, section 9). In that paper,L1

corresponds to the choicea = c = 1. The 2-form (20) is obtained by settinga = 1, c = 0,
so the complex part of (30) becomes

−2k[1+ r + s + rs − t2] dx ∧ dy (32)

which, apart from the−2k which arises from the multiplication of the quaternion, is the
canonical 2-form of semi-geostrophic theory. The choicea = 1, c = √3 gives a new
balance model (see McIntyre and Roulstone (1996) for further details). In all three examples,
we identify (29) with the notation of McIntyre and Roulstone as simplyZ = X andW = Y ,
except that McIntyre and Roulstone choose to include

√−1 in c.
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4. Summary

The geometric description of the semi-geostrophic equations has been crucial in the
construction of finite-element numerical models (Cullen and Purser 1984, Purser and Cullen
1987). A description in terms of Legendre transformations is summarized in Chynoweth
and Sewell (1991), and a description in terms of the polar factorization of maps is given in
Brenier (1996).

We have shown how the geostrophic coordinatesX, Y of semi-geostrophic theory and
the complex coordinates forL1 dynamics discovered by McIntyre and Roulstone (1996) can
be viewed as part of an underlying quaternionic description of the slow manifold defined by
geostrophic balance. This slow manifold possesses a natural Kähler structure with respect
to a symplectic representation of the quaternion.

We thank Professor M J Sewell for useful discussions. This work was supported by the
Isaac Newton Institute through a Programme on the Mathematics of Atmosphere and Ocean
Dynamics and we thank the Institute for their hospitality. The work of VR was partly
supported by grant RFBR-96-02-18046, and by the Leverhulme Trust through the Isaac
Newton Institute.
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